Low transient storage and uptake efficiencies in seven agricultural streams: implications for nutrient demand.
نویسندگان
چکیده
We used mass load budgets, transient storage modeling, and nutrient spiraling metrics to characterize nitrate (NO), ammonium (NH), and inorganic phosphorus (SRP) demand in seven agricultural streams across the United States and to identify in-stream services that may control these conditions. Retention of one or all nutrients was observed in all but one stream, but demand for all nutrients was low relative to the mass in transport. Transient storage metrics (/, , , and ) correlated with NO retention but not NH or SRP retention, suggesting in-stream services associated with transient storage and stream water residence time could influence reach-scale NO demand. However, because the fraction of median reach-scale travel time due to transient storage () was ≤1.2% across the sites, only a relatively small demand for NO could be generated by transient storage. In contrast, net uptake of nutrients from the water column calculated from nutrient spiraling metrics were not significant at any site because uptake lengths calculated from background nutrient concentrations were statistically insignificant and therefore much longer than the study reaches. These results suggest that low transient storage coupled with high surface water NO inputs have resulted in uptake efficiencies that are not sufficient to offset groundwater inputs of N. Nutrient retention has been linked to physical and hydrogeologic elements that drive flow through transient storage areas where residence time and biotic contact are maximized; however, our findings indicate that similar mechanisms are unable to generate a significant nutrient demand in these streams relative to the loads.
منابع مشابه
Relating nutrient uptake with transient storage in forested mountain streams
Streams control the timing and delivery of fluvial nutrient export from watersheds, and hydraulic processes such as transient storage may affect nutrient uptake and transformation. Although we expect that hydraulic processes that retain water will increase nutrient uptake, the relationship between transient storage and nutrient uptake is not clear. To examine this relationship, we injected a co...
متن کاملAssimilatory uptake rather than nitrification and denitrification determines nitrogen removal patterns in streams of varying land use
Agricultural and urban land use increase nitrogen (N) concentrations in streams, which can saturate biotic demand by plants, algae, and bacteria via assimilative uptake, and by nitrification and denitrification. We studied six streams per year in each of three land-use categories (agricultural, urban, and forested) for 3 yr (n 5 18 streams), and we compared whole-stream N uptake and microbial N...
متن کاملIn-Stream Nutrient Retention in Agricultural Catchments
In northeastern Austria, marshlands have been turned into the most productive arable land of the country. As a result, most headwater streams show structurally degraded channels, lacking riparian buff er zones, which are heavily loaded with nutrients from the surrounding crop fi elds. Th e present study examines whether longitudinally restricted riparian forest buff ers can enhance the in-strea...
متن کاملTransient Storage, Discharge, and Nutrient Uptake in Small Streams of the Kolyma River Basin, Siberia
متن کامل
Relating transient storage to channel complexity in streams of varying land use in Jackson Hole, Wyoming
[1] Transient storage processes are important to biogeochemical cycling in many streams and depend greatly upon stream fluvial structure. Fluvial geomorphic structure establishes patterns of surface water and subsurface head distributions, often driving hyporheic exchange through steps, riffles, and meanders, and controls the potential for in-channel dead zone storage in side pools, eddies, etc...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of environmental quality
دوره 43 6 شماره
صفحات -
تاریخ انتشار 2014